鉴于问题的复杂性,从各种传感器模式到高度纠缠的对象布局,再到多样化的项目属性和抓地力类型,因此对视觉驱动的机器人系统提出了重大挑战。现有方法通常从一个角度解决问题。各种项目和复杂的垃圾箱场景需要多种选择策略以及高级推理。因此,要构建可靠的机器学习算法来解决这项复杂的任务,需要大量的全面和高质量的数据。在现实世界中收集此类数据将太昂贵,时间过高,因此从可伸缩性角度来看。为了解决这个大型,多样化的数据问题,我们从最近的元素概念上的增长中获得了灵感,并引入了MetagraspNet,这是一种通过基于物理学的元合成构建的大规模的照片现实垃圾箱挑选数据集。所提出的数据集在82种不同的文章类型上包含217K RGBD图像,并具有完整的注释,可用于对象检测,Amodal感知,关键点检测,操纵顺序和平行jaw和真空吸尘器的Ambidextrous Grasp标签。我们还提供了一个真实的数据集,该数据集由超过2.3k全面注释的高质量RGBD图像组成,分为5个困难级别和一个看不见的对象,以评估不同的对象和布局属性。最后,我们进行了广泛的实验,表明我们提出的真空密封模型和合成数据集实现了最先进的性能,并将其推广到现实世界用例。
translated by 谷歌翻译
模棱两可的神经网络,其隐藏的特征根据G组作用于数据的表示,表现出训练效率和提高的概括性能。在这项工作中,我们将群体不变和模棱两可的表示学习扩展到无监督的深度学习领域。我们根据编码器框架提出了一种通用学习策略,其中潜在表示以不变的术语和模棱两可的组动作组件分开。关键的想法是,网络学会通过学习预测适当的小组操作来对齐输入和输出姿势以解决重建任务的适当组动作来编码和从组不变表示形式进行编码和解码数据。我们在Equivariant编码器上得出必要的条件,并提出了对任何G(离散且连续的)有效的构造。我们明确描述了我们的旋转,翻译和排列的构造。我们在采用不同网络体系结构的各种数据类型的各种实验中测试了方法的有效性和鲁棒性。
translated by 谷歌翻译
最近,在对图形结构数据上应用深度神经网络有很大的成功。然而,大多数工作侧重于节点或图形级监督学习,例如节点,链接或图形分类或节点级无监督学习(例如节点群集)。尽管其应用广泛,但图表级无监督的学习尚未受到很多关注。这可能主要归因于图形的高表示复杂性,可以由n表示!等效邻接矩阵,其中n是节点的数量。在这项工作中,我们通过提出用于图形结构数据的置换不变变化自动码器来解决此问题。我们所提出的模型间接学习以匹配输入和输出图的节点排序,而不施加特定节点排序或执行昂贵的图形匹配。我们展示了我们提出模型对各种图形重建和生成任务的有效性,并评估了下游图形水平分类和回归提取的表示的表现力。
translated by 谷歌翻译
Self-supervised learning is a popular and powerful method for utilizing large amounts of unlabeled data, for which a wide variety of training objectives have been proposed in the literature. In this study, we perform a Bayesian analysis of state-of-the-art self-supervised learning objectives and propose a unified formulation based on likelihood learning. Our analysis suggests a simple method for integrating self-supervised learning with generative models, allowing for the joint training of these two seemingly distinct approaches. We refer to this combined framework as GEDI, which stands for GEnerative and DIscriminative training. Additionally, we demonstrate an instantiation of the GEDI framework by integrating an energy-based model with a cluster-based self-supervised learning model. Through experiments on synthetic and real-world data, including SVHN, CIFAR10, and CIFAR100, we show that GEDI outperforms existing self-supervised learning strategies in terms of clustering performance by a wide margin. We also demonstrate that GEDI can be integrated into a neural-symbolic framework to address tasks in the small data regime, where it can use logical constraints to further improve clustering and classification performance.
translated by 谷歌翻译
State-of-the-art performance in electroencephalography (EEG) decoding tasks is currently often achieved with either Deep-Learning or Riemannian-Geometry-based decoders. Recently, there is growing interest in Deep Riemannian Networks (DRNs) possibly combining the advantages of both previous classes of methods. However, there are still a range of topics where additional insight is needed to pave the way for a more widespread application of DRNs in EEG. These include architecture design questions such as network size and end-to-end ability as well as model training questions. How these factors affect model performance has not been explored. Additionally, it is not clear how the data within these networks is transformed, and whether this would correlate with traditional EEG decoding. Our study aims to lay the groundwork in the area of these topics through the analysis of DRNs for EEG with a wide range of hyperparameters. Networks were tested on two public EEG datasets and compared with state-of-the-art ConvNets. Here we propose end-to-end EEG SPDNet (EE(G)-SPDNet), and we show that this wide, end-to-end DRN can outperform the ConvNets, and in doing so use physiologically plausible frequency regions. We also show that the end-to-end approach learns more complex filters than traditional band-pass filters targeting the classical alpha, beta, and gamma frequency bands of the EEG, and that performance can benefit from channel specific filtering approaches. Additionally, architectural analysis revealed areas for further improvement due to the possible loss of Riemannian specific information throughout the network. Our study thus shows how to design and train DRNs to infer task-related information from the raw EEG without the need of handcrafted filterbanks and highlights the potential of end-to-end DRNs such as EE(G)-SPDNet for high-performance EEG decoding.
translated by 谷歌翻译
In-context learning (ICL) enables large language models (LLMs) to perform new tasks by prompting them with a sequence of training examples. However, ICL is very sensitive to the choice of training examples: randomly sampling examples from a training set leads to high variance in performance. In this paper, we show that curating a carefully chosen subset of training data greatly stabilizes ICL performance. We propose two methods to choose training subsets, both of which score training examples individually and then select the highest-scoring ones. CondAcc scores a training example by its average ICL accuracy when combined with random training examples, while Datamodels learns a linear proxy model that estimates how the presence of each training example influences LLM accuracy. On average, CondAcc and Datamodels outperform sampling from the entire training set by 7.7% and 6.3%, respectively, across 5 tasks and two LLMs. Our analysis shows that stable subset examples are no more diverse than average, and are not outliers in terms of sequence length and perplexity.
translated by 谷歌翻译
As language models (LMs) scale, they develop many novel behaviors, good and bad, exacerbating the need to evaluate how they behave. Prior work creates evaluations with crowdwork (which is time-consuming and expensive) or existing data sources (which are not always available). Here, we automatically generate evaluations with LMs. We explore approaches with varying amounts of human effort, from instructing LMs to write yes/no questions to making complex Winogender schemas with multiple stages of LM-based generation and filtering. Crowdworkers rate the examples as highly relevant and agree with 90-100% of labels, sometimes more so than corresponding human-written datasets. We generate 154 datasets and discover new cases of inverse scaling where LMs get worse with size. Larger LMs repeat back a dialog user's preferred answer ("sycophancy") and express greater desire to pursue concerning goals like resource acquisition and goal preservation. We also find some of the first examples of inverse scaling in RL from Human Feedback (RLHF), where more RLHF makes LMs worse. For example, RLHF makes LMs express stronger political views (on gun rights and immigration) and a greater desire to avoid shut down. Overall, LM-written evaluations are high-quality and let us quickly discover many novel LM behaviors.
translated by 谷歌翻译
As AI systems become more capable, we would like to enlist their help to supervise other AIs. We experiment with methods for training a harmless AI assistant through self-improvement, without any human labels identifying harmful outputs. The only human oversight is provided through a list of rules or principles, and so we refer to the method as 'Constitutional AI'. The process involves both a supervised learning and a reinforcement learning phase. In the supervised phase we sample from an initial model, then generate self-critiques and revisions, and then finetune the original model on revised responses. In the RL phase, we sample from the finetuned model, use a model to evaluate which of the two samples is better, and then train a preference model from this dataset of AI preferences. We then train with RL using the preference model as the reward signal, i.e. we use 'RL from AI Feedback' (RLAIF). As a result we are able to train a harmless but non-evasive AI assistant that engages with harmful queries by explaining its objections to them. Both the SL and RL methods can leverage chain-of-thought style reasoning to improve the human-judged performance and transparency of AI decision making. These methods make it possible to control AI behavior more precisely and with far fewer human labels.
translated by 谷歌翻译
Decades of progress in simulation-based surrogate-assisted optimization and unprecedented growth in computational power have enabled researchers and practitioners to optimize previously intractable complex engineering problems. This paper investigates the possible benefit of a concurrent utilization of multiple simulation-based surrogate models to solve complex discrete optimization problems. To fulfill this, the so-called Self-Adaptive Multi-surrogate Assisted Efficient Global Optimization algorithm (SAMA-DiEGO), which features a two-stage online model management strategy, is proposed and further benchmarked on fifteen binary-encoded combinatorial and fifteen ordinal problems against several state-of-the-art non-surrogate or single surrogate assisted optimization algorithms. Our findings indicate that SAMA-DiEGO can rapidly converge to better solutions on a majority of the test problems, which shows the feasibility and advantage of using multiple surrogate models in optimizing discrete problems.
translated by 谷歌翻译
As causal inference becomes more widespread the importance of having good tools to test for causal effects increases. In this work we focus on the problem of testing for causal effects that manifest in a difference in distribution for treatment and control. We build on work applying kernel methods to causality, considering the previously introduced Counterfactual Mean Embedding framework (\textsc{CfME}). We improve on this by proposing the \emph{Doubly Robust Counterfactual Mean Embedding} (\textsc{DR-CfME}), which has better theoretical properties than its predecessor by leveraging semiparametric theory. This leads us to propose new kernel based test statistics for distributional effects which are based upon doubly robust estimators of treatment effects. We propose two test statistics, one which is a direct improvement on previous work and one which can be applied even when the support of the treatment arm is a subset of that of the control arm. We demonstrate the validity of our methods on simulated and real-world data, as well as giving an application in off-policy evaluation.
translated by 谷歌翻译